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Ahsiract. The classical Lagrangian governing a system with real nuclear and fictitious 
‘electronic’ degrees of freedom is derived explicitly in the mast general case of the choicp 
of parameters such as LCM coefficients. cenm of the basis set orbitals, and multicOnfigumtiOn 
cwfficienls. ‘Electronic’ dynamics is in general non-Newtonian. The expressions for the 
appropriare masses are obtained in the limit of small velocities. The dynamics of nuclei WUIS 
on the Bom-Oppeoheimer pcmtial energy hypersurface because their equations of mation are 
determined by the Hellmann-Feynman-type f o r a  becoming dependent upon the ‘electronic’ 
cwrdinam and the corresponding conjugate momenla. 

I. Introduction 

Since 1985, when Car and Parrinello [ I ]  (see [2-4] for a review) offered the approach now 
bearing their names, the many-electron molecular dynamics method has been rethought 
and considerably remodified to treat the electronic and nuclear subsystems on an equal 
classical mechanics footing. Referring originally to the one-electron density formulation 
of the quantum many-body variational principle (see [SI for review), the Car-Parrinello 
approach has been further directly extended to the Hartree-Fock variational principle [61. 

In fact, the idea behind this approach is indeed superior. It does not rely on the particular 
form of the many-body variational principle employed, and it is based on the fact that 
any trial quantity, say 0 (the oneelectron density, p, or the many-electron wavefunction, 
Y, for example) involved in either form of the variational principle, should possess, by 
definition, some parameters W .  p ,  y ,  etc. The latter parameters are interpreted as classical 
degrees of Freedom, and the final thing that must be done is to write a classical mechanics 
Lagrangian governing their dynamics and agreeing with the quantum many-body variational 
principle, in terms of E [ @ ] ,  for the chosen parental trial quantity 0. Within the usual Born- 
Oppenheimer approach, for instance, the procedure of constructing such a Lagrangian mostly 
concerns the so-called ‘electronic’ degrees of freedom associated with those trial parameters 
that were included in e, because the nuclear variables are still treated semiclassically, by 
straightforward analogy with the traditional molecular dynamics method. Such a procedure, 
aiming at deriving the appropriate equations of motion, must tell us how to detennine the 
quantities that lie at the heart of classical dynamics: the masses corresponding to all degrees 
of freedom and the forces acting upon them. 

The Car-Parrinello Lagrangian deals with all ‘electronic’ degrees of freedom in a 
Newtonian manner. Namely, it is a working suggestion that the corresponding masses 
are just numbers, even originally ignoring their differences, no matter which sort of 
parametrization they come from. A choice of masses has often been thought of as a purely 
computational task, and they have to be small enough to make negligible the oscillating 
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energy Row between the ‘electronic’ and nuclear degrees of freedom. Furthermore, in 
the context of Car-Paninello Newton-type dynamics, the forces acting upon the nuclei 
appear to be no longer of the traditional Hellmann-Feynman type, but are corrected by 
the so-called Pulay term 171. This results in the fact that nuclei do not move on the usual 
Bom-Oppenheimer energy potential hypersurface. The source of the correction term arises 
from identifying the position vectors of the real nuclei with the centres of the basis set 
orbitals treated as parameters (see, e.g.. the remarks by Pastore and co-workers 171). These, 
and other problems which the Car-Parrinello Lagrangian faces, are under discussion in the 
literature [1-4,6,7]. 

In the present paper we aim to rigorously construct a classical mechanics Lagrangian 
of the ‘electronic’ parameter-type degrees of freedom, on the grounds of the quantum 
variational principle. Specifically, the construction procedure is based on a general 
formulation [8] (for recent publications see [9, IO]) with a certain modification of the 
Dirac-Frenkel time-dependent variational principle (see Dirac, Frenkel, and Langhoff and 
co-workers [ 1 I]). We consider a fixed trial quantity 0 depending on the family of parameters 
8 = a,,% y. . . _. To minimize E [ Q ]  is equivalent to seeking the optimized trajectory in 
the domain ’Dz of the given family of parameters being equipped with a frcrifious rime 
f dependence. This trajectory tums out to be the extremum of the appropriately derived 
Lagrangian of the classical system whose degrees of freedom are assigned with 0. 

The paper is organized in the following way. Section 2 focuses on the construction 
procedure of a classical Lagrangian and the corresponding equations of motion in the 
general case of choosing ‘electronic’ parameters. In particular it is emphasized that, in 
general, an ‘electronic’ dynamics appears to be non-Newtonian. This section ends by 
discussing the distinction between such ‘electronic’ parameters as the orbital centres on 
one hand, and the real nuclear positions on the other hand. The total separation of these 
degrees of freedom causes the forces acting upon the nuclei to coincide exactly with the 
Hellmann-Feynman forces, whilst the Pulay correction term begins to play the role of the 
force acting upon a cenm-of-orbital degree of freedom. In section 3 the general algorithm 
is illustrated by choosing Q to be equal to the closed-shell Ha.rtreuFock wavefunction. 
The configuration interaction wavefunction is treated in the background of the Hartree- 
Fock classical dynamics. This allows us to obtain explicit expressions for the masses of 
‘electronic’ degrees of freedom in the limit of small velocities. All terms appearing in 
the equations of motion are derived analytically. A comparison with the Car-Paninello 
Lagrangian is made. Section 5 concludes the paper with a discussion. Atomic units are 
used throughout the paper. 

2. General molecular dynamics formalism 

Consider a quantum N-electron system govemed by the N-electron Hamiltonian 

where U,, = Iri -r,l-’: U,, = -E,?!, ZE, Z,lq -%.I-‘ and U, = 
+ cfl,,, Z,&l%. -%I-‘. In ( I )  the vector defines the position of the ith elecmn 
(i = I . .  . . , N), while the 0th nucleus is characterized by mass Mu, nuclear charge 
Z., position vector %- (a = 1..  . . , M ) ,  and the conjugated momentum P.. Introduce 
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z; (7;. s;), where s; is the rth spin projection of the ith electron, and X, = (&,Se), 
for S, being the zth spin projection of the ath nucleus. For the sake of convenience, a trial 
quantity (3 is identified with ly. 

Quantum many-body theory has to deal with the fact that any exact boundenergy 
eigenstate of the Hamiltonian H is unknown and seems to be inaccessible. However, with 
an approximate trial wavefunction W([z;)Ll: [&)E,) which by definition contains some 
well chosen parameters [ E ; ] ,  one can come close to the exact ground state by minimizing 
the expectation value of the energy 

El*]= W‘(IzitL1; lxetz=,)IHlW(lz;l~N=I; l-%l.”=,)) E &[El (2) 

with respect to the parameters set E = I.$;), instead of the Hilbert space ‘H of such W 
for which the energy functional E[ly] is well defined. That results in the parametrically 
optimized wavefunction WOpf 

The procedure of minimizing E*[[c;]] can be treated in a different way. One can 
assume that a certain topologically closed domain De, exists for each set of parameters [ E ; )  
which are associated with the given and fixed trial W. The minimization search s t a  with 
the initially chosen value E*[($!)] and ends at E*[[$! E,?)] where each $’ E Dt,. 
Imagine a bundle of differentiable trajectories [ E ; ( f ) )  linking the boundary points IC,!} at 

fictitious time f of some classical system whose degrees of freedom are associated with 
It;). The arc length of these trajectories can be taken as t. In terms of quantum mechanics, 
this fictitious system moves in the definitive domain B of the Hilbert space ‘H consisting of 
unit wavefunctions [Y({’RK(t)): [{,(r)))J,=-T,2. Clearly, B* is fully determined by the form 
of the chosen total trial wavefunction ly. In other words, a trial rl! controls the fictitious 
dynamics. Its extrema1 path optimizes the minimization search. Such a picture is useful 
in formally deriving a classical mechanics Lagrangian [SI on the basis of the modified 
Frenkel-Dim time-dependent variational principle [ I  I ]  (see [9, IO] for recent publications 
on this topic). 

The Hamiltonian H is written in terms of real quantum mechanical variables, namely 
the couples of the canonical momentum and position variables of the pertinent electrons as 
well as in terms of the appropriate canonical conjugate variables of the nuclei. Assume that 
the latter ones are treated classically within the usual Bom-Oppenheimer approximation. 
Define the Hamiltonian action 

ly((z;)Ll: [Xu),”=,; (6;””)). 

I = -T I2  and [ej f ] at f = +T/2,  and think of them as possible paths of motion in a 

1=+T/Z 

where 

Lto~Ot) E ( ly ( l6 i ) ) l t8 /a f  - HBo((%-]a)lly([~;iD~. (4) 

Here Hso is the traditional Bom-Oppenheimer Hamiltonian 

Notice that the vectors defining the nuclear positions, still appear in HBO. In (4), 
the set 6 of parameters is rotated to complex values where the imaginary parts of parameters 
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are related to momenta (see [8, IO]). This set is 'electronic' in nature and thus may include 
vectors R, (K = I ,  . . . , M), the centres of the chosen spin-orbital basis set in which a trial 
wavefunction Iv is always expanded: 

where GI is a linear coefficient associated with a single Slater determinant (the brackets [ 1 
display a determinant) 

D J ( ( z i t L 1 )  = (N!)-] '*[+jj.,(zi)+j~(z*) . . - + j # ( z ~ ) I  (7) 

in which each +i(z), i = I , .  . . , K is expanded in terms of the given atomic basis spin- 
orbitals {&,(z)lh=i 

Here til* is the element of the LCAO K x L matrix C = (tic) in the ith row and gth column, 
where L is the dimension of the basis set It is worth noticing that, strictly speaking, there 
exists a fundamental difference between the vectors, [I&$!, and {Rc)k,. The former 
are included in HBO and will become the real quantum mechanical variables if one goes 
beyond the usual Bom-Oppenheimer approximation. The latter are just suitable parameters 
assigned to a trial many-electron wavefunction. 

The fictitious time derivative in (4) is applied to the 'electronic' degrees of freedom. 
Hence, following the line of the general approach [SI (see also 19, lo]), one derives the 
Lagrangian of the 'electronic' classical subsystem 

where the dot means a time derivative, E E [ E [ )  and its complex conjugate 8 = [ET E &], 
where #toG = (Y(%)lH~olY(a)), and where 

zjB' (Ivr(g)ia,u(s)) ,2jZ1 (ag,u(S)lIv(s)) (10) 
- 

with a, aiah and ai a/ah. 
The equations of the coupled motion of the 'electronic' and nuclear degrees of freedom 

are 

where 1)'""' is the matrix with the elements q, = iT;jD(g; E) with D(8; E) = 
(q(%)IIv(E)). Here T is the matrix differential operator with Tij = a*[,$,; n expresses 
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some possible 'electronic' constraints, and t is the corresponding Lagrange multiplier. In 
the last line of ( I  I ) 

I M 

is the force acting upon the a th  nucleus from the remaining classical system with the 
'electronic' degrees of freedom. 

To conclude this section, it is worthwhile to note the following. 
First, studying the evolution of the 'electronic' degrees of freedom, we introduce the 

fictitious time 1 = ?,le, (as the arc length, for instance). The nuclear degrees of freedom 
evolve in real time, say tnUcl. The nuclear dynamics is physically meaningful. Since the 
initial 'electronic' parameters, or the initial moment of their evolution, can be chosen rather 
arbitrarily, one can put t,~,, = tnucj. In other words, both sorts of degrees of freedom start 
and end their time evolution simultaneously. 

Second, generally speaking, the dynamics of the 'electronic' degrees of freedom is 
Lagrangian, as can be seen from ( I  2), or non-Newtonian, i.e. the 'electronic' masses are no 
longer simple proportional coefiicients between momenta and velocities. They determine 
the inertial tensor which includes the dependence on the other degrees as well as on their 
momenta. 

Third, the motion of the 'electronic' and nuclear variables are coupled In particular, the 
force qF depends on the 'lighter' variables and takes the familiar Hellmann-Feynman form 
because, within the present approach, the 'nuclear' variables appearing as the 'electronic' 
parameters (see (6)  and (8)) are considered separately from the real nuclear variables. The 
dynamics of the former ones is generally non-Newtonian, in contrast to that of the latter 
ones. 

3. Classical dynamics on the Hartree-Fock state 

3.1. 'Electronic' equations of morion 

Choose a trial II, in the simplest form (7) of the closed-shell Slater determinant (N = 2M): 

* H F ( I I , Z 2 , ,  .. , I N )  = ( ~ ! ) - " 2 [ ~ l ( T l ) ~ ( ~ I ) ~ I ( ~ 2 ) ~ ( ~ Z ) . ~ ~ ~ . M ( f N ) ~ ( ~ N ) ] ~  (13) 

Each orbital $i(r) is represented by ( 8 )  with the appropriate replacing of o by r. Therefore, 
in this particular case of the closed-shell Hartree-Fock approximation, one deals with the 
following 'electronic' degrees of freedom determining the fictitious classical subsystem. 
(i) R is the column vector consisting of Rr, K = 1 , .  . . , M, the centres of the basis set 
orbitals. (ii) The matrix C E (qP) of LCAO coefficients defined by (8). Other parameters 
which may appear in the expression of a basis set orbitals can be trivially included in the 
treatment In the most general case of a ci-type N-electron wavefunction q((zi)L,), the 
expansion coefficients GI defined by (6), join the set of 'electronic' degrees of freedom 
outlined above. 
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LCAO parameters impose the following constraint on the dynamics of the fictitious 
‘electronic’ subsystem: 

L 

Pij E 1 Ei,S,”(R&j” - s i j  = 0. 
P . , S l  

(14) 

In principle, the aforementioned constraints can be removed by the reparametrization (see, 
for instance, [ 121). The CI dynamics requires an extra constraint, A G,G/ - 1 = 0. 

The Hartree-Fock Lagrangian takes the form of (9): 

- &[*,e; R, c]. ( 1 3  
The next step is to derive the equations of motion of the ‘electronic’ degrees of freedom: 

The symbolic column in the RHS of (16) is the generalized force matrix. Each element 
of this matrix is composed of two terms. The first is the contribution of the proper force 
and the second is the so-called contribution of the ‘constraint’. The former is expressed as 
follows. For the Rth force: 

= ( q H F ( 2 ;  cIHBOl&,\llW(% c)) (Y = 1,. . . , M 
and for the Cth force: 

~ , , , , E H ~ = ~ C F ~ ~ Z ~ ~  i = ~  ,..., K @ = I  ,..., L. (17) 

Here we have used the formula for the derivative of the Hartree-Fock energy with respect 
to LCAO coefficients (see, e.g., [ 131); F,,” is the (p ,  U) element of the Fock matrix. 

The elements of the matrix are: 

qi;“’ = l(a&qHF(%; c)iaRA%(% c)) 
a 

a n ,  ”1 = 2* - [ [ ($1 I $1 ) . . . ($i-  I I h - 1 )  (6s I$i) ( $ i + ~  I$i+ I) . . . ( 9 ~  I ~ M ) ]  ?ifis 

x [(el I$]) , . . (e;- I ~ + i - l ) ( $ i ~ $ i ) ~ t + ~  I$;+]). . . W M W M ) ] }  

Evaluation of the RRth matrix elements and the Rth forces is fully determined by the 
functional form of the chosen orbital basis set {4P(v)]h=1. If they are chosen as contracted 
Gaussians, for instance, the aforementioned matrix elements can be given in the closed 
analytical form via the familiar connection formulae (see, e.g., [ 141). 
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3.2. Inertia tensor 

Consider (16): partition the 'electronic' variables, U and C, into their real and imaginary 
parts (see [S ,9 ]  also): 

1 - R - - ( f f K + t & )  K = I ,  ...M 

I 
- J 2  

(1% 
cip = Jz(". + dip) i = 1. .. . , K fi = I , .  . . , L. 

Rewrite (16) in terms of the new variables: 

where Q = (aK), 9 = (Be) .  7 = (yi,,) and 6 = ( S i p ) .  In (20) the block matrices are defined 
as follows: 

The matrices VI**' and V1cc' are asymmetric. Hence, in particular, their diagonal elements 
vanish. 

y ip  >> 
Si,, so that I H ~  of the form (13) with complex parameters becomes close to the real 
one. Assume further that the nondiagonal elements of the matrices U'RR' and U"" are 
negligibly small with respect to their diagonal elements. Let us also assume that these 
diagonal elements give the dominant contribution to the equations of motion (20). To this 
order of approximation, we now make a comparison of (16) with the canonical Hamiltonian 
equations of motion. It results in the following explicit form for the coordinate and conjugate 
momentum variables: 

Assume now that each 2, and each ciP are very close to the real values, cr, >> 

Q. = ur/J2 = Re U, 
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Expand the 'electronic' Hamiltonian function EHF in terms of aK, K = 1,. . . , M and 
yip. i = 1. . . . , K ;  p = I ,  , . . , L to this order of accuracy and compare the obtained formula 
with the familiar bilinear form of the kinetic energy. One finds the formula for the mass 
mj(Re E) of the variable 5,. the corresponding diagonal elements of the ineltia tensor (see 
also Kermin and Koonin [SI): 

It follows immediately from the last expression in (23) that, to the mentioned order of 
accuracy, the LCAO coefficient's mass mip becomes equal to 1/2F,,, the p th  diagonal 
element of the Fock matrix. The latter in turn depends also upon all the variables under 
study: LCAO coefficients accompanying two-electron integrals, ['&I involved in one- and 
two-electron integrals and the overlap matrix, and finally, (%} appearing in the one-electron 
integrals of the electron-nuclear 'external' potential. According to (17). the frequency of 
small oscillations of the c,th degree of freedom about the global minimum is determined 
by 2F,,. Hence, in summary, the masses of the E A 0  coefficients are different for the 
different A 0  orbitals. One sees also from (23) that the corresponding masses of the R,th 
degrees of freedom are no longer constant and are not equal to the appropriate nuclear 
masses, at least for small velocities in all degrees of freedom in question. To evaluate 
these masses by means of the first formula in (23), one should specify an orbital basis set. 
In the case of the dynamics on the configuration interaction quantum state, the 'electronic' 
inertia tensor becomes more complicated owing to the contribution of the additional degrees 
of freedom related with CI expansion coefficients. In particular, extending the assumption 
of small enough velocities to the CI degrees of freedom and neglecting the non-diagonal 
elements of the corresponding matrices in the appmpriate equations of motion, one obtains 
that m;: = EBo[Dl ] ,  the expectation value of Hp.0 in the state described by the Slater 
determinant DI .  Therefore. one can conclude that the equations of motion of the 'electronic' 
degrees of freedom derived above are of non-Newtonian type. 

3.3. Dissipation 

Assume the validity of the bilinear form of the 'electronic' kinetic energy. This assumption 
is, in particular, justified in the aforementioned case of small enough velocities. The total 
Hartree-Fock Hamiltonian function of the 'electronic' and nuclear subsystems then takes 
the expression 

&[{ti. pi ) :  {%. 5 1 1  = - Cm;'pip, + X+U., + u:~+ ~2~ 

where 

M 
(24) 

1 

2 i j  

= (*HF((t i i ) lU~I*'HF({Bi}) )  = (*HF({b})luenl*HF(I&)))* (25) 
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The set (ti] of the electronic parameters in question is comprised of LCAO coefficients, 
(tip], and of the centres (RKJ of the basis AO. Choose, for instance, (cilr = e:] (not too 
far away from the equilibrium point (CL)) in the subdomain of parameters where the form 
(24) is well defined. The values of the remaining parameters, (7&] and {a), yield the 
local minimum conditions 

[a,(U:F+u:F](o) = o  [a.%ts. + u:F],,, = o  (26) 

where the subscript (0) is shorthand for ({cl;’]; {Rp)]; {I%:’]). It is worth noting that the 
local minimum conditions for centres of the basis set orbitals are separated from those for 
the nuclear positions. Expanding the Hamiltonian function (24) in the neighbourhood of the 
point (0) in the domain of the electronic parameters and 3 0  vectors of the nuclear positions, 
one obtains 

where all the quantities equipped with the subscript (0) are evaluated at the local minimum 
determined above. As seen from (27), the expansion of the H q F o c k  Hamiltonian 
function involves the Pulay-type gradient of the Hellmann-Feynman force. 

Consider the kinetic energy part of the expansion (27). A couple of the diagonal 
expansion coefficients can be easily evaluated 

fm;;pa<,r,m;pi,, = - ~ C k ” [ Z ( W l U k )  - ( P l k P ) l  
K 

where (puln6) is the two-electron repulsion integral. The last expression in (28) 
demonstrates that the @th orbital contnbution to the electmnic part of the Hellmann- 
Feynman force determines the curvature of the diagonal of the inertia tensor of the cilrth 
degree of freedom. The expression for &:,aGm,,,j,, is rather cumbersome to present 
in explicit form. It includes the gradients of one- and two-electron integrals and the overlap 
matrix of the basis set with respect to Rc. 

In a course of the c,,th degree of freedom from the chosen value, cj;’. to the global 
minimum one, cf,, the energy stored early in this degree of freedom dissipates to all other 
degrees of freedom, both the ‘electronic’ and the nuclear ones. Explicitly, the dissipation 
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terms appear in particular in the following equations of motion for the comsponding 
momenta: 

ZPjjj,? = CCk”[2(PPlVk) - (PulkP)14; + . . . 
I 

it follows from (29) that the dissipation of energy from one of the Lao degrees of freedom 
is determined by the square of its velocity, with the coefficient expressed in terms of the 
curvature of the inertia tensor. Such dissipation is absolutely absent in the Car-Paninello 
scheme. 

3.4. Model example 

To illustrate the formalism, consider the following onedimensional model Hamiltonian: 

with the potential 

U(r;  R )  = 2D[e-PRcosh(2@r) - 2e-”R/Zcosh(@r)] (31) 

chosen in the symmetric double-Morse form ( D  > 0). 
On the one hand, the Hamiltonian (30) is the ID analogue of the general one given by 

( I) in the particular case of H$ with a double-Morse eIectron+uclear interaction. On the 
other hand, it is widely used in studies of proton dynamics in symmetric hydrogen-bonded 
bridges A-H.. .A (see [IS] and references therein). In both cases mentioned, the coordinate 
r refers to a lighter subsystem (an electron in the former case and a proton in the latter 
case) with mass m, while R is assigned to the heavier subsystem with relative mass M. 
The origin of the reference frame is chosen at the centre of mass of the heavier subsystem. 

Choose a trial unit wavefunction of the lighter subsystem described by the Bom- 
Oppenheimer Hamiltonian HB0: 

W(r; R) = &exp(-culr - R’I) R = R I  + I R ~ .  (32) 

The corresponding Lagrangian of this subsystem takes the form 

(33) 
d 
df L(R) = -401-(R1R2) - E(Rl, R2; R) 

where the Hamiltonian function is 
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The appropriate equations of motion follow directly from (33): 

81az(Ri + 
- 81a2(R: + ~ : ) ( 7 i ~  - 7iz) = (an, - I ~ J E ( R , .  R ~ ;  R )  

t 7?z) = (h, + I ~ ) E ( R I ,  R2; R )  
(35) 

with the initial condition R,(O) = R, > 0 and Rz(0) = 0. The equations of motion (36) 
look like canonical equations, if taking the limit of small velocities; we define the coordinate 
Q and its conjugate momentum P as follows: 

Q == RI P = 4d(R; + Rf;)Rz. (37) 

To this order, inverting (37) results in Rz = P / 4 d Q z .  

of the hyperbola type: 
One also finds with the help of (36) that, in the (RI, Rz) plane, there exists a relationship 

with vertices f%. The hyperbola (38) divides the (RI, Rz) plane into three regions, two 
of them embedded by its left and right branches, and one in between (% # 0). The latter, 
so-called 'tunneling' region, is classically forbidden in our case. This pictorially resembles 
the display of semiclassically quantized trajectories of H: obtained by Strand and Reinhardt 
[I61 (see also [l71). 

Equation (38) determines the allowed regions of motion of the lighter subsystem. The 
pair of canonical variables presented in (37) is well defined in a small neighbourhood 
of RI = A%&, the vertices of a hyperbola (38). To extend their definition to other 
RI # %&, say the point 72, = Ry > R, sealed on the right branch, we put Rt( f )  = 
Ry + Q.R2(f) = 72; + y with - [%I2. The expansion of the Hamiltonian 
function in powers of Q and y to second order, and the insertion of the resultant expression 
into the equations of motion, with a comparison with those in the canonical Hamiltonian 
form give us the new canonical conjugate variables at this point of the hyperbolx Q and 
P = 4aZ[2(RP)Z - (77$]y. Substitute them into the Hamiltonian function instead of the 
original 721.2. Expand the obtained function in the powers of P, Q to second order. One 
gets the following: 

= 

where we have used the following notation: 

) ( 2 
PI -01 k = 32rYZDB BR32p2 - U * )  + - 



with 

exp(-BR)sinh2f?R: 
4(aZ - 82) PI = 

exp(-pR) cosh 2872: 
4(a2 - p) P z =  

exp(-pR/2) cosh fJR: 
a2 = 

4cr2 - 8 2  

Thus. as follows, all the fictitious quantities determining the Lagrangian, such as the mass, 
harmonic force constant, and so on. depend upon the nuclear variable R. The solution of 
the corresponding equations of motion is straightforward to obtain: 

where the frequency o2 = ( k / m )  - A’. Thus, the lighter subsystem pdotms finite 
oscillations iff first, the mass m is positive, i.e. UI - pi 0, and second the harmonic 
force constant k and the harmonic frequency o2 both become positive if the following 
double-side inequality holds: 

with a2S < 1. These equations are treated as the constraints imposed on the admissible 
a. B and R. The electronic component of the Hellmann-Feynman force depends upon the 
couple of conjugate variables of the lighter subsystem. 
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4. Concluding remarks 

The procedure of constructing a fictitious~classical Lagrangian on a set of degrees of 
freedoms playing the role of parameters in a given trial quantum quantity 0 has been 
elaborated. The resultant equations of motion of parameters evolving in a certain time 
determine the optimal trajectory. This trajectory in the parametric space being substituted 
from point to point into 0 yields the path in the corresponding domain of admissible 
0 which can be oblained vkd minimizing the quantum manyelectron functional E [ Q ]  of 
energy. In this sense, the above procedure reveals the rigorous accord with the quantum 
many-electron variational principle. 

The basic concem was to develop expliciily this procedure in the common case of the 
usual Bom-Oppenheimer approximation, with Q beiig a many-electron wavefunction ly. 
The commonest parameters of W are LCAO coefficients, centres of basis set orbitals, and CI 
expansion coefficients. All of them were involved in the aforementioned procedure to obtain 
the corresponding classical Lagrangian in the explicit form and the appropriate equations 
of motion as well. 

A clear-cut borderline has been drawn to separate ‘electronic’ parameters, such as centres 
of basis set orbitals, from the radius vectors of positions of nuclei. The main reasons were 
the following. First, the former ones are artificial by their very nature, in comparison with 
the latter which are quantum operators from the beginning (in our case from (I)). Assuming 
semiclassicity of the latter, the dynamics of nuclei appears to be Newtonian and occurs on 
the Bom-Oppenheimer potential energy hypersurface. On the contrary, the dynamics of 
those centres is in general non-Newtonian, and their inertia tensor depends functionally 
on all the parameters under study and also on the nuclear positions. This is the second 
reason. The complete ignorance of differences between centres of orbitals and positions of 
nuclei leads primarily to global renormalizing of the nuclear masses. That is a price to be 
paid. The renormalized masses organize into the appropriate tensor of inettia, depending 
on all ‘electronic’ degrees of freedom and differing in its form from one particular problem 
to another, say from ly to @. The resultant equations of motion lose their simple and 
pleasant Newtonian form. The situation appears even more complicated beyond the Bom- 
Oppenheimer approximation, where similar ‘nuclear’ parametric degrees of freedom must be 
introduced. However, made locally, for example at the very start of the optimal trajectory. 
this ignorance will perhaps be useful. 

Finally, we remark upon one nuance related to the elaborated procedure. It refers to 
the case when 0 is replaced by the one-electron density p. Within the density functional 
formulation of the self-consistent field developed in [ 5 ]  (ch. 8.3e and 8.4e), the above 
procedure consists of two stages. In the first stage, one creates a classical Lagrangian that 
governs a fictitious dynamics of parameters associated with a trial p under the parameters 
of a ‘host’ wavefunction to be fixed (the so-called charge consistency with a ‘host’ 
wavefunction). The second stage is needed to construct a classical Lagrangian on a set 
of parameters of a ‘host’ wavefunction (the ‘host’ consistency). Both Lagrangians result 
in coupled equations of motion. Solving them, one finds the optimal trajectory in the total 
parmetric space that completes a self-consistency of those parameters belonging to p with 
those of a ‘host’ ly. 
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